MEMORANDUM

TO:

Whitney Madison

Babienko Architects PLLC 815 Seattle Boulevard South

Studio 206

Seattle, WA 98134

FROM:

Douglas Clair

DATE:

2/15/18

PAGES:

(81) incl. cover + full-sized plan sheets

RE:

LS Residence (Permit #1708-086), Mercer Island Corrections Notice 1, dated 1/17/18.

Whitney:

This memo summarizes my responses to the various structural items shown on the City of Mercer Island Corrections Notice dated xxxxx

Sheet Comment and Response

S1.0

1) Steel stairs on this project appear to be specialty design. Include steel stair shop drawings, and indicate which deferred submittals will require design by the manufacturers' engineer (likely CLT and Stair)

Steel stair stringers and details have been added to the plan set. See updated sheets S2.0, S2.1, S2.2 & S3.1.

2) Staff note, no response required: a key inspection will be added to the coversheet requiring that the CLT shop drawings and stamped calculations be submitted for review and approval to CMI 3 weeks prior to fabrication.

CLT panels including overhangs have been designed per manufacturers design specifications available on the manufacturer website. Shop drawings including panel layouts from the manufacturer should be provided to ensure than spans of the panels are adequate to support the cantilevered and double cantilevered edges.

S2.0

Provide calculations for hold-down anchor table 10/S5.0. That detail appears to only apply at stem wall construction. Many of these anchors are installed in thickened slab. Designate on plan which anchors are post-installed in existing concrete and provide calculations, notes and details specific to that installation (10/S5.0 states that all are cast in place)

Note to cast-in or epoxy holdowns have been added next to each foundation holddown callout. Holddowns not called on plans have been removed from

schedule. HDU4 epoxy embedment in 10/S5.0 has been updated. Please see detail 12/S5.0 for notes how to cast anchors through stem into footing for increased capacity.

Detail 6/S3.0 has been added and referenced on plans for increased concrete depth for HDU8 anchors.

See Attachment A for holddown calculations. These values are designed for the maximum loads the holddown hardware can transmit to the anchors. Holddowns specified in shearwall calculations have been verified for a demand less than the allowed capacity of specified holddown.

2) Provide calculations for retaining wall shown in 12/S3.1

See Attachment B for retaining wall calculation.

3) Coordinate with arch to provide footings for exterior stair (see A507)

Strip footing has been added to the plan sheet as well as a new detail (5/S3.0) to show footing and wall detailing at exterior stair.

S2.1 1) The garage topping slab doesn't appear to be called out or specified (if it deviates from the typical nonstructural topping slab which is requested in an architectural comment)

Topping slab does not need to be reinforced at the garage. Floor joists are designed for garage loading as well as added weight from topping slab. Note to be updated in architectural drawings.

2) Calculations and beam layouts and callouts don't appear to be coordinated with the main floor framing

New beam layout and corresponding beam calculations have been updated to match.

See Attachment C for calculations.

3) Please review gravity calculations and callouts. This beam is noted as FB27 and no calculation is found in the packet.

FB27 has been added/updated in calculations and beam map in Attachment C.

4) Please review gravity calculations and callouts. This beam is noted as FB12 and no calculation is found in the packet.

FB12 has been added/updated in calculations and beam map in Attachment C.

5) This beam is noted as moment frame but not included in lateral calculation (or gravity design). Provide a complete narrative and design for the structure here.

FB101 has been added in calculations and beam map in Attachment C. This beam has been designed for lateral and gravity loads.

This moment frame has been designed to support lateral loading of the main floor deck only. Lateral loads along this grid line have been dragged into the diaphragm and into the SW5 wall segments beyond. A continuous CMSTC14 strap has been calculated as a tension strap and added at the plywood level to ensure load transfer from shearwalls above are carried into basement level shearwall. Horizontal offset irregularity penalties have been applied to the connection of the diaphragm to the shearwall segments. Detail 7/S4.3 has been added. Calculations for the strap have been added to Attachment C.

6) Provide floor system for exterior deck beyond SLT7 span.

Wall studs for landing and sloping exterior stair have been added to the plans. Sawn lumber framing will bear on the new wall and a new header added to the plans.

7) Coordinate with arch to provide details of landing and attachment and foundation for exterior stair.

Stud wall and footing have been added along with new detail 5/S3.0 to cover framing to support stair landing.

8) Please review gravity calculations and callouts for main floor framing vs calculations provided and keyplan on calc page 12/78. There appear to have been revisions to framing following the calculations.

Gravity calculations and main floor framing callouts have been updated on plans and in Attachment C calculations. Upper floor loading has been revised in locations where previous calculations differed from the proposed plan.

S2.2 1) Coordinate with arch where the open stair 1/A508 is shown on upper floor plan A102. The change in elevation reflected in detail 4/S4.2 along Grid 2 appears to occur elsewhere in the arch set.

Stair opening have been coordinated with the architectural set. Detail 4/S4.2 has been updated to more accurately match architectural sections.

2) There appear to be conflicts between structural and architectural on the framing here (architectural shows stringer connection to the face/bottom of CLT where the wide flange interferes). If there is interaction between two designs which will require deferred submittal, provide enough detail and appropriate reactions on the bearing element to direct the design of the deferred items, ie if this stair is intended to free-span around the corner and attach to the top of the CLT panel in the living room, provide the reactions on plan.

Stair stringer and attachment has been coordinated with architectural set. Updated stringer attachment details have been added to sheet S3.1.

Harriott Valentine Engineers Inc.

3) Second floor key on calculation page 11/78 also calls this beam SB13 (I think). See other comment this sheet. No calc for this MC13 or the W12x30 supporting it (nor any W12x30) were found in the calculations. The gravity calcs may be a partial set?

Calculations for beam SB13 and the corresponding supporting beams (SB14 & SB24) have been included.

See Attachment D for calculations.

4) Arch upper floor plan shows a step in elevation at the entryway to the master closet, how is this constructed?

Step has been removed from architectural plans.

5) Is there a post here not called out on this level?

(2)2x6 post has been designed and added to the plan set in this location.

See Attachment E for calculations.

6) Provide collector and drag connection design for SW4 along grid 5.

W12x30 beam serves as the drag strut/ collector for this shearwall.

See Attachment F for calculations.

7) Provide collector and drag connection design for SW6 along grid 4.

Northern W12x30 has been extended to span over the grid 4 SW to collect floor loading in the SW. Strap has been added to the face of this beam and adjacent GL beam to drag southern diaphragm loads into SW.

See Attachment G for calculations.

8) Provide a detail of this post offset. These posts do not appear on the level below.

New post has been added to the plans to support this point load. Loading from new post has been carried to beam below and is reflected in updated beam calculations found in the updated calculation set.

9) Clarify floor beam calculations. This beam appears to be called out on key as SB13. Calculations Jump from SB10 on page 34/78 to SB20 on page 35/78. Verify in the calculation for this beam that deflection is coordinated with detailing of or manufacturer's tolerance for vertical deflection at the sliding door below.

Beam map has been updated to include calculations for this beam, SB200. Manufacturer recommends a max deflection of 0.25" (or I/720). Beam has been updated to a W12x30.

See Attachment D for calculations.

S2.3 2) Calculation for BR18 appears to be missing from calc packet. Please check gravity calc packet for completeness against framing keyplan.

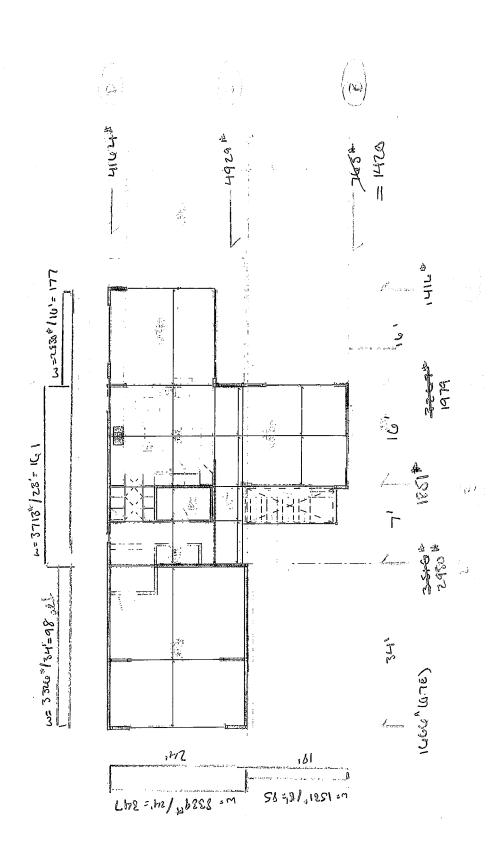
Roof framing beam map has been updated and beam calculations have been updated. Please note beam callouts may skip numerical order as beams from older plan sets have been removed. This should be apparent in new beam map.

See Attachment H for calculations.

I trust this summarizes the issues adequately.

Sincerely,

Douglas O. Clair, P.E.


Harriott Valentine Engineers Inc.

Attachment A

Structural Calculations for Correction Notice Item S2.0 – Note 1

HOHOL - HONG H

T same T

LATERAL DESTON

upper plust

R= 1664 984=2656#

L= 8.75'

v= 302 pet [5w2]

N= 8.6'

OT= 2574 [2)6469

(2)2×4

R= 3516#+3849#= C865# L= 15.5' U= 249 pl | [SUZ] h= 8.5' OT = 2119 (2) (516) (2) 2x4

1979 # R= 326 # + 2870# = 6187 # L= 5.5 ! V= 1445 PRA [SWO] N= 8.6 !

OT = 9484 7494 1 OTOTALL FLEGGE 10045"

USE HOUTH

6 14262 11 (5)240

2= 1416 * L= 3'3" (h11=2.0 N= 435 V'= 435 " 2012 = 5001 pet 504

> N=8.8' OT= 3098 " (3)ESIU

TL= 5278/ C= 6732* (3)256 1420 2122 3542 4 R= 168 1 143 = 1908 1908 1 R= 4.01 N= 8.5'

OT= 4064 7520 HDUII

Q=38' N=281 plt [SWZ] N=8.5' OT=2896#6 HOUL

> R=4164+3240+27464+ L=481 N=184 Pet (SWI) OT=1405 (SICO)

N= 1881"

U= 1881"

N= 7.5

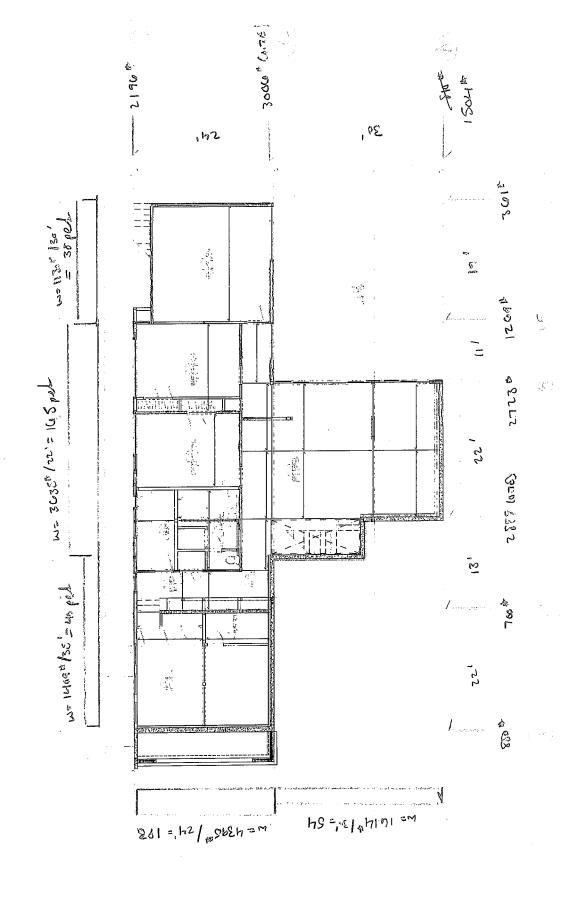
OT= 1572

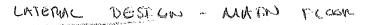
O.UOL= 1950 M

OT-0.410L= 10 AND MO

ON STOCKED

LS.

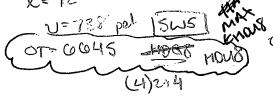

1932 First Avenue, Suite 720 Seattle, Washington 98101-2447 tel. 206 624 4760 | fax 447 6971


02/15/18

Page 8 of 81

FMATE ASSO

FBER11 - 1136 #



N141 -9'

R= 700 H C866 = 7505 Q= 18.67' U= 405 pa) [503] OT = 3647 HOUS (2)244

> R=2723#+0137*=8666# R=12'

R=1269+1416 = 2688 b Q=1600' N=1607 pet (SWI) OT=1510 HOUR (2)244

R= 3CO16 R= 4.331 N= 83 pet (Sw1) OT= 750 MNU? (2)2×60

R= 2196 # + 7404" - 76000 R= 42'
N= 229 pet (SLAZ)
DT 7057 + DUZ

(2)2+60

Company:	HVE	Date:	1/25/2018
Engineer:	DOC	 Page:	1/4
Project:	LS		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

Design method:ACI 318-11 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor Material: F1554 Grade 36 Diameter (inch): 0.625

Effective Embedment depth, her (inch): 8.000

Code report: ICC-ES ESR-2508

Anchor category: -Anchor ductility: Yes h_{min} (inch): 11.13 cac (inch): 13.33 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2 Load combination: not set Seismic design: Yes Anchors subjected to sustained tension: No Ductility section for tension: D.3.3.4.2 not applicable

Ω₀ factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

Project description: HDU2

EPÖXY 8" STEM WALL

Location:

Fastening description:

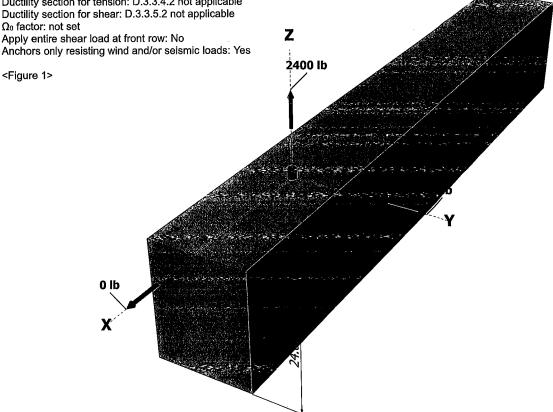
Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 24.00

State: Cracked

Compressive strength, f'c (psi): 2500

Ψ_{c.V}: 1.0


Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete Inspection: Continuous

Temperature range, Short/Long: 150/110°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Company:	HVE	Date:	1/25/2018
Engineer:	DOC	Page:	2/4
Project:	LS		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor Anchor Name: SET-XP® - SET-XP w/ 5/8"Ø F1554 Gr. 36

Code Report: ICC-ES ESR-2508

Company:	HVE	Date:	1/25/2018
Engineer:	DOC	Page:	3/4
Project:	LS		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, Vuay (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2400.0	0.0	0.0	0.0
Sum	2400.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 2400 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
13110	0.75	9833

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda_a \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-6)

k c	λ_a	f'_c (psi)	hef (in)	N _b (lb)					
17.0	1.00	2500	8.000	19233					
$0.75\phi N_{cb} = 0$	0.75¢ (Anc/Anco) $\Psi_{ed,N}\Psi_{c,N}\Psi_{cp,N}\Lambda$	l _b (Sec. D.4.1 8	k Eq. D-3)					
A _{Nc} (in ²)	A_{Nco} (in ²	Ca,min (in)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{c\rho,N}$	N_b (lb)	ϕ	$0.75\phi N_{cb}$ (lb)	
192.00	576.00	4.00	0.800	1.00	1.000	19233	0.65	2500	

6. Adhesive Strength of Anchor in Tension (Sec. 5.5)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat} \alpha_{N.seis}$

τ _{k,cr} (psi)	f _{short-term}	Ksat	αN.seis	τ _{k,cr} (psi)				
435	1.72	1.00	1.00	748				
$N_{ba} = \lambda_a \tau_{cr} \pi_0$	daher (Eq. D-22)							
λa	τ _{cr} (psi)	da (in)	h _{ef} (in)	N _{ba} (lb)				
1.00	748	0.63	8.000	11753				
$0.75\phi N_a = 0.$	75¢ (Ana / Anao)	$\Psi_{ed,Na}\Psi_{cp,Na}N_{ba}$	(Sec. D.4.1 & Ed	լ. D-18)				
A_{Na} (in ²)	A_{Na0} (in ²)	c _{Na} (in)	c _{a,min} (in)	$\mathscr{V}_{ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	ϕ	0.75 <i>∳N₃</i> (lb)
128.74	258.98	8.05	4.00	0.849	1.000	11753	0.65	2419

Company:	HVE	Date:	1/25/2018
Engineer:	DOC	Page:	4/4
Project:	LS		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øN₁ (lb)	Ratio	Status
Steel	2400	9833	0.24	Pass
Concrete breakout	2400	2500	0.96	Pass
Adhesive	2400	2419	0.99	Pass (Governs)

SET-XP w/ 5/8"Ø F1554 Gr. 36 with hef = 8.000 inch meets the selected design criteria.

12. Warnings

- When cracked concrete is selected, concrete compressive strength used in concrete breakout strength in tension, adhesive strength in tension and concrete pryout strength in shear for SET-XP adhesive anchor is limited to 2,500 psi per ICC-ES ESR-2508 Section 5.3.
- Per designer input, the tensile component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor tensile force associated with the same load combination. Therefore the ductility requirements of ACI 318 D.3.3.4.3 for tension need not be satisfied designer to verify.
- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 D.3.3.5.3 for shear need not be satisfied designer to verify.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	HVE	Date:	1/25/2018
Engineer:	DOC	Page:	1/4
Project:	LS		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-11 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor Material: F1554 Grade 36 Diameter (inch): 0.625 Effective Embedment depth, hef (inch): 12.500

Code report: ICC-ES ESR-2508

Anchor category: -Anchor ductility: Yes h_{min} (inch): 15.63 cac (inch): 26.30 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set Seismic design: Yes

Ductility section for shear: D.3.3.5.2 not applicable Ω₀ factor: not set

Project description: HDU4

EPOXY

8" STEM WALL

Location:

Fastening description:

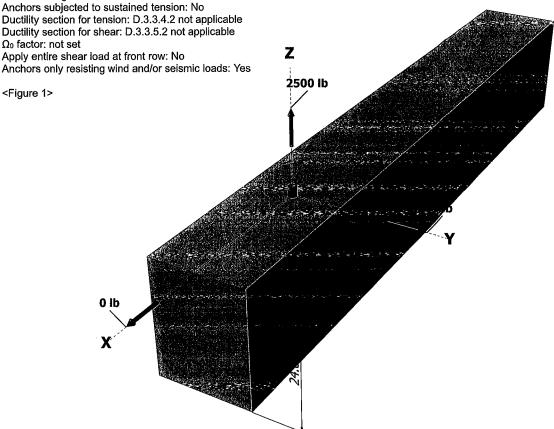
Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 24.00

State: Cracked

Compressive strength, f'c (psi): 2500

Ψων: 1.0


Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete Inspection: Continuous

Temperature range, Short/Long: 150/110°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Company:	HVE	Date:	1/25/2018
Engineer:	DOC	Page:	2/4
Project:	LS		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor Anchor Name: SET-XP® - SET-XP w/ 5/8"Ø F1554 Gr. 36

Code Report: ICC-ES ESR-2508

Company:	HVE	Date:	1/25/2018
Engineer:	DOC	Page:	3/4
Project:	LS		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (Ib)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	2500.0	0.0	0.0	0.0	
Sum	2500.0	0.0	0.0	0.0	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 2500

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
13110	0.75	9833

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

f'c (psi)

het (in)

 $N_b = k_c \lambda_a \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-6)

<i>k</i> _c	λ_a	f'c (psi)	het (in)	N _b (lb)					
17.0	1.00	2500	8.000	19233					
$0.75\phi N_{cb}=0$	0.75¢ (Anc/Anco) $\Psi_{ed,N}\Psi_{c,N}\Psi_{cp,N}\Lambda$	lь (Sec. D.4.1 8	k Eq. D-3)					
A_{Nc} (in ²)	A_{Nco} (in ²	Ca,min (in)	$\varPsi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	ϕ	0.75 <i>∮Nc</i> ♭ (lb)	
192.00	576.00	4.00	0.800	1.00	1.000	19233	0.65	2500	

 N_b (lb)

6. Adhesive Strength of Anchor in Tension (Sec. 5.5)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat} \alpha_{N.seis}$

τ _{k,cr} (psi)	f _{short-term}	Ksat	αN.seis	τ _{k,cr} (psi)				
435	1.72	1.00	1.00	748				
$N_{ba} = \lambda_a \tau_{cr} \pi c$	daher (Eq. D-22)							
λa	$ au_{cr}$ (psi)	da (in)	h _{ef} (in)	N_{ba} (lb)				
1.00	748	0.63	12.500	18364				
$0.75\phi N_a = 0.$	75¢ (Ana / Anao)	Yed,Na Ycp,NaNba	(Sec. D.4.1 & Ed	ą. D-18)				
A_{Na} (in ²)	A_{Na0} (in 2)	c _{Na} (in)	Са,тіп (in)	$\Psi_{ed,Na}$	$arPsi_{ ho,Na}$	N _{a0} (lb)	ϕ	$0.75\phi N_a$ (lb
128.74	258.98	8.05	4.00	0.849	1.000	18364	0.65	3779

Company:	HVE	Date:	1/25/2018
Engineer:	DOC	Page:	4/4
Project:	LS		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (Ib)	Design Strength, øN₁ (lb)	Ratio	Status
Steel	2500	9833	0.25	Pass
Concrete breakout	2500	2500	1.00	Pass (Governs)
Adhesive	2500	3779	0.66	Pass

SET-XP w/ 5/8"Ø F1554 Gr. 36 with hef = 12.500 inch meets the selected design criteria.

12. Warnings

- When cracked concrete is selected, concrete compressive strength used in concrete breakout strength in tension, adhesive strength in tension and concrete pryout strength in shear for SET-XP adhesive anchor is limited to 2,500 psi per ICC-ES ESR-2508 Section 5.3.
- Per designer input, the tensile component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor tensile force associated with the same load combination. Therefore the ductility requirements of ACI 318 D.3.3.4.3 for tension need not be satisfied designer to verify.
- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 D.3.3.5.3 for shear need not be satisfied designer to verify.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	HVE	Date:	1/25/2018
Engineer:	DOC	Page:	1/4
Project:	LS		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-11 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor Material: F1554 Grade 36 Diameter (inch): 0.625

Effective Embedment depth, her (inch): 6.000

Code report: ICC-ES ESR-2508

Anchor category: -Anchor ductility: Yes h_{min} (inch): 9.13 cac (inch): 12.07 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: Yes

Anchors subjected to sustained tension: No Ductility section for tension: D.3.3.4.2 not applicable Ductility section for shear: D.3.3.5.2 not applicable

Ω₀ factor: not set

<Figure 1>

Anchors only resisting wind and/or seismic loads: Yes Z

Project description: HDU5 CAST-IN FOOTING

Location:

Fastening description:

Base Material

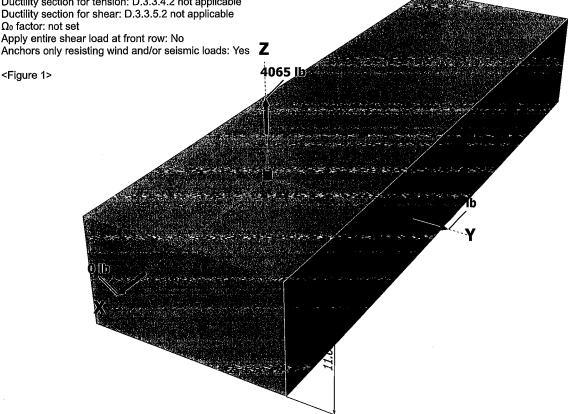
Concrete: Normal-weight

Concrete thickness, h (inch): 11.00

State: Cracked

Compressive strength, f'c (psi): 2500

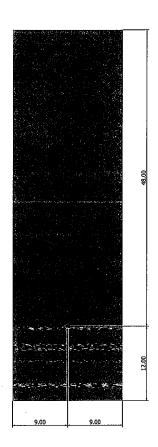
Ψ_{c,V}: 1.0


Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete Inspection: Continuous

Temperature range, Short/Long: 150/110°F


Ignore 6do requirement: Not applicable Build-up grout pad: No

Company:	HVE	Date:	1/25/2018
Engineer:	DOC	Page:	2/4
Project:	LS		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: SET-XP® - SET-XP w/ 5/8"Ø F1554 Gr. 36

Code Report: ICC-ES ESR-2508

Company:	HVE	Date: 1/25/2018
Engineer:	DOC	Page: 3/4
Project:	LS	
Address:		
Phone:		
E-mail:		

3. Resulting Anchor Forces

Anchor	Tension load, Nua (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	4065.0	0.0	0.0	0.0
Sum	4065.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 4065 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. D.5.1)

N _{sa} (lb)	• •	ϕN_{sa} (lb)
13110	0.75	9833 ·

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda_e \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-6)

<i>k</i> _c	λ_a	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$0.75\phi N_{cb}=0$).75¢ (Anc/Anco) $\Psi_{ed,N}\Psi_{c,N}\Psi_{cp,N}\Lambda$	lь (Sec. D.4.1 8	k Eq. D-3)				
A _{Nc} (in²)	A_{Nco} (in ²	Ca,min (in)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	$0.75\phi N_{cb}$ (lb)
324.00	324.00	9.00	1.000	1.00	1.000	12492	0.65	6090

6. Adhesive Strength of Anchor in Tension (Sec. 5.5)

Ksat

αN.seis

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat} \alpha_{N.seis}$

fshort-term

τ_{k,cr} (psi)

1.72	1.00	1.00	748				
dahef (Eq. D-22)							
$ au_{cr}$ (psi)	da (in)	h _{ef} (in)	N_{ba} (lb)				
748	0.63	6.000	3815				
75¢ (Ana / Anao)	Ψ _{ed,Na} Ψ _{cp,Na} N _{ba}	(Sec. D.4.1 & Ed	լ. D-18)				
A_{Na0} (in ²)	c _{Na} (in)	Ca,min (in)	$\Psi_{ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	ϕ	$0.75\phi N_a$ (lb)
258.98	8.05	9.00	1.000	1.000	8815	0.65	4297
	$d_a h_{ef}$ (Eq. D-22) $ au_{cr}$ (psi) $ au_{def}$ $ au_{def}$ $ au_{def}$ $ au_{def}$ $ au_{def}$ $ au_{def}$ $ au_{def}$ $ au_{def}$ $ au_{def}$	d_ah_{ef} (Eq. D-22) $ au_{cr}$ (psi) d_a (in) $ au_{da}$ 0.63 $ au_{da}$ (Ana/Anao) $\Psi_{ed,Na}$ $\Psi_{cp,Na}$ Nba A_{Nao} (in²) c_{Na} (in)	d_ah_{ef} (Eq. D-22) $ au_{cr}$ (psi) d_a (in) h_{ef} (in) $ au_{ef}$ (in) $ au_{ef}$ (in) $ au_{ef}$ (in) $ au_{ef}$ (in) $ au_{ef}$ (in) $ au_{eff}$ (in) $ au_{eff}$ (in)	d_ah_{ef} (Eq. D-22) τ_{cr} (psi) d_a (in) h_{ef} (in) N_{ba} (lb) 748 0.63 6.000 3815 75ϕ (A_{Na}/A_{Na0}) $\Psi_{ed,Na}$ $\Psi_{cp,Na}N_{ba}$ (Sec. D.4.1 & Eq. D-18) A_{Na0} (in ²) c_{Na} (in) $c_{a,min}$ (in) $\Psi_{ed,Na}$	$\frac{d_{a}h_{ef}\left(\text{Eq. D-22}\right)}{\tau_{cr}\left(\text{psi}\right)} \frac{d_{a}\left(\text{in}\right)}{d_{a}\left(\text{in}\right)} \frac{h_{ef}\left(\text{in}\right)}{h_{ef}\left(\text{in}\right)} \frac{N_{ba}\left(\text{lb}\right)}{N_{ba}\left(\text{lb}\right)}$ $\frac{748}{75\phi} \frac{0.63}{\left(A_{Na}/A_{Na0}\right)} \frac{6.000}{4^{9}} \frac{3815}{4^{9}}$ $\frac{75\phi}{A_{Na0}\left(\text{in}^{2}\right)} \frac{C_{Na}\left(\text{in}\right)}{C_{Na}\left(\text{in}\right)} \frac{C_{a,min}\left(\text{in}\right)}{C_{ed,Na}} \frac{\Psi_{ed,Na}}{\Psi_{p,Na}} \frac{\Psi_{p,Na}}{4^{9}}$	$ \frac{d_{a}h_{ef}\left(\text{Eq. D-22}\right)}{\tau_{cr}\left(\text{psi}\right) \qquad d_{a}\left(\text{in}\right) \qquad h_{ef}\left(\text{in}\right) \qquad N_{ba}\left(\text{lb}\right) }{748 \qquad 0.63 \qquad 6.000 \qquad 3815 } $ $ 75\phi\left(A_{Na}/A_{Na0}\right)Y_{ed,Na}Y_{cp,Na}N_{ba}\left(\text{Sec. D.4.1 \& Eq. D-18}\right) $ $ A_{Na0}\left(\text{in}^{2}\right) \qquad C_{Na}\left(\text{in}\right) \qquad C_{a,min}\left(\text{in}\right) \qquad Y_{ed,Na} \qquad Y_{p,Na} \qquad N_{a0}\left(\text{lb}\right) $	$ \frac{d_{a}h_{of}\left(\text{Eq. D-22}\right)}{\tau_{cr}\left(\text{psi}\right)} \frac{d_{a}\left(\text{in}\right)}{d_{a}\left(\text{in}\right)} \frac{h_{ef}\left(\text{in}\right)}{N_{ba}\left(\text{lb}\right)} $

τ_{k,cr} (psi)

Company:	HVE	Date:	1/25/2018
Engineer:	DOC	Page:	4/4
Project:	LS		
Address:			
Phone:			
E-mail:		·	

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øN₁ (lb)	Ratio	Status
Steel	4065	9833	0.41	Pass
Concrete breakout	4065	6090	0.67	Pass
Adhesive	4065	4297	0.95	Pass (Governs)

SET-XP w/ 5/8"Ø F1554 Gr. 36 with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- When cracked concrete is selected, concrete compressive strength used in concrete breakout strength in tension, adhesive strength in tension and concrete pryout strength in shear for SET-XP adhesive anchor is limited to 2,500 psi per ICC-ES ESR-2508 Section 5.3.
- Per designer input, the tensile component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor tensile force associated with the same load combination. Therefore the ductility requirements of ACI 318 D.3.3.4.3 for tension need not be satisfied designer to verify.
- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 D.3.3.5.3 for shear need not be satisfied designer to verify.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Harriott Valentine Engineers Inc.

Attachment B

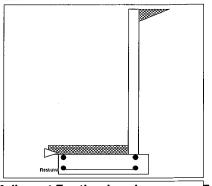
Structural Calculations for Correction Notice Item S2.0 – Note 2

Description....

Page: 1

Date: 25 JAN 2018

This Wall in File: P:\Active Jobs\LS Residence\Engineering\ls retaining walls.RPX


Retailleit	J (C) 1307-2010,	Dulla 11.10	.07.10
License:	KW-06055874		
	To: HARRIO	LT CMITL	VALENTINE
しいしせいろせ	IU. HARRIU	1 1 3 1 1 1 1 1 1	AWFRIATINE

Cantilevered Retaining Wall

Code: IBC 2015,ACI 318-14,ACI 530-13

Criteria Retained Height 8.00 ft Wall height above soil 0.00 ft Slope Behind Wall 0.00 Height of Soil over Toe 6.00 in Water height over heel = 0.0 ft

Soil Data Allow Soil Bearing 2,000.0 psf Equivalent Fluid Pressure Method Active Heel Pressure 35.0 psf/ft Passive Pressure 250.0 psf/ft Soil Density, Heel 120.00 pcf Soil Density, Toe 0.00 pcf = Footing||Soil Friction 0.400 Soil height to ignore for passive pressure 12.00 in

Surcharge Loads

Surcharge Over Heel 0.0 psf Used To Resist Sliding & Overturning Surcharge Over Toe 0.0 Used for Sliding & Overturning

Axial Load Applied to Stem

Axial Dead Load	=	288.0 lbs
Axial Live Load	=	230.0 lbs
Axial Load Eccentricity	=	0.0 in

Lateral Load Applied to Stem

Lateral LoadHeight to TopHeight to Bottom	= =	0.0 #/ft 0.00 ft 0.00 ft
Load Type		Wind (W) (Service Level)

Wind on Exposed Stem ... 0.0 psf (Service Level)

Adjacent Footing Load

Adjacent Footing Load	=	0.0 lbs
	-	•
Footing Width	=	0.00 ft
Eccentricity	=	0.00 in
Wall to Ftg CL Dist	=	0.00 ft
Footing Type		Line Load
Base Above/Below Soil	=	0.0 ft
at Back of Wall	-	0.0 10
Poisson's Ratio	=	0.300

Design Summary

Wall Stability	/ Ratios			
Overturning		=	1.60	OK
	Slab Resists	All S	Sliding!	

Total Bearing Loadresultant ecc.	=	2,329 lbs 8.94 in	
Soil Pressure @ Toe Soil Pressure @ Heel	= =		f OK
Allowable Soil Pressure Less	= Tha	2,000 ps n Allowable	f
ACI Factored @ Toe ACI Factored @ Heel	=	1,444 ps 5 ps	
Footing Shear @ Toe	=	17.1 ps	i OK
Footing Shear @ Heel	=	5.0 ps	i OK
Allowable	=	75.0 ps	i
Sliding Calcs Lateral Sliding Force	=	1,443.9 lbs	

	Wall Material Ab
	Design Method
	Thickness
	Rebar Size
	Rebar Spacing
,	Rebar Placed at
〈	Design Data —
`	fb/FB + fa/Fa
	Total Force @ \$
	Service Level
	Strength Leve
,	MomentActu
(Service Leve
<	Strength Leve
	MomentAllow

Stem Construction	-	Bottom	
Design Height Above Ftg	== =	Stem OK 0.00	
Wall Material Above "Ht"		Concrete	
Design Method	=	LRFD	
Thickness	52	6.00	
Rebar Size	=	# 4	
Rebar Spacing	=	8.00	
Rebar Placed at	=	Edge	
Design Data —			
fb/FB + fa/Fa	=	0.909	
Total Force @ Section			
Service Level	lbs=		
Strength Level	lbs =	1,792.0	
MomentActual			
Service Level	ft-# =		
Strength Level	ft-# =	4,778.7	
MomentAllowable	=	5,259.6	
Service Level	noi –		∳
	psi =		•
Strength Level	psi =	35.1	
ShearAllowable	psi =	75.0	
Anet (Masonry)	in2 =		
Rebar Depth 'd'	in=	4.25	
Masonry Data			
<u>f</u> m	psi =		
Fs	psi =		
Solid Grouting	=		
Modular Ratio 'n'		75.0	
Wall Weight	psf=	75.0	
_ Short Term Factor	=		
Equiv. Solid Thick.	=	B. Co. alliano and a factorial	
Masonry Block Type	=	Medium Weight	Į.
Masonry Design Method		ASD	
Concrete Data	psi=	2,500.0	
Fy	psi =	60,000.0	
ry	psi	00,000.0	

Vertical component of active lateral soil pressure IS NOT considered in the calculation of soil bearing

Load Factors ———	
Building Code	IBC 2015,ACI
Dead Load	1.200
Live Load	1.600
Earth, H	1.600
Wind, W	1.000
Seismic, E	1.000

Title LS Residence_insulated wall Job#: Dsgnr: DOC

Description....

Page: 2 Date: 25 JAN 2018

This Wall in File: P:\Active Jobs\LS Residence\Engineering\ls retaining walls.RPX

RetainPro (c) 1987-2016, Build 11.16.07.15 License : KW-06055874 License To : HARRIOTT SMITH VALENTINE

Cantilevered Retaining Wall

Code: IBC 2015,ACI 318-14,ACI 530-13

Concrete Stem Rebar Area Details

Bottom Stem

Horizontal Reinforcing

As (based on applied moment):

0.2701 in2/ft

(4/3) * As:

0.3602 in2/ft

Vertical Reinforcing

Min Stem T&S Reinf Area 1.152 in2

200bd/fy: 200(12)(4.25)/60000:

0.17 in2/ft

Min Stem T&S Reinf Area per ft of stem Height: 0.144 in2/ft

0.0018bh: 0.0018(12)(6):

0.1296 in2/ft

Horizontal Reinforcing Options: One layer of: Two layers of:

Required Area:

0.2701 in2/ft 0.3 in2/ft

#4@ 16.67 in #5@ 25.83 in #4@ 33.33 in #5@ 51.67 in

Provided Area: Maximum Area:

0.5757 in2/ft

#6@ 36.67 in

#6@ 73.33 in

Footing Dimensions & Strengths

Toe Wid	lth	=	3.50 ft
Heel Wi	dth	=	1.00
Total Fo	oting Width	= -	4.50
Footing	Thickness	=	13.00 in
Key Wid	lth	=	12.00 in
Key Dep	oth	=	0.00 in
Key Dist	ance from Toe	=	2.00 ft
fc =	2,500 psi	. Fy =	60,000 psi

Footing Concrete Density = 150.00 pcf Min. As % 0.0018

Cover @ Top

2.00 @ Btm.= 3.00 in Footing Design Results

		<u>Toe</u>	Heel
Factored Pressure	=	1,444	5 psf
Mu' : Upward	=	6,561	7 ft-#
Mu' : Downward	=	1,635	168 ft-#
Mu: Design	=	4,925	161 ft-#
Actual 1-Way Shear	=	17.11	5.01 psi
Allow 1-Way Shear	=	75.00	75.00 psi
Toe Reinforcing	=	# 4 @ 8.00 in	
Heel Reinforcing	=	None Spec'd	

Key Reinforcing = None Spec'd

Other Acceptable Sizes & Spacings

Toe: #4@ 8.55 in, #5@ 13.25 in, #6@ 18.80 in, #7@ 25.64 in, #8@ 33.76 in, #9@ 42

Heel: Not req'd: Mu < phi*5*lambda*sqrt(f'c)*Sm Key: Slab Resists Sliding - No Force on Key

Min footing T&S reinf Area Min footing T&S reinf Area per foot

1.26 in2 0.28 in2 /ft

If one layer of horizontal bars:

If two layers of horizontal bars:

* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

#4@ 8.55 in #5@ 13.25 in #6@ 18.80 in

#4@ 17.09 in #5@ 26.50 in #6@ 37.61 in

Summary of Overturning & Resisting Forces & Moments

		OV	ERTURNING					SISTING	
Item		Force lbs	Distance ft	Moment ft-#			Force lbs	Distance ft	Moment ft-#
Heel Active Pressure	=	1,443.9	3.03	4,371.7	Soil Over Heel		480.0	4.25	2,040.0
Surcharge over Heel	=				Sloped Soil Over Heel	=			
Surcharge Over Toe	=				Surcharge Over Heel	=			
Adjacent Footing Load	=				Adjacent Footing Load	=			
Added Lateral Load	=				Axial Dead Load on Stem:	=	288.0	3.75	1,080.0
Load @ Stem Above So	il =				* Axial Live Load on Stem :	=	230.0	3.75	862.5
-	=				Soil Over Toe	=		1.75	
					Surcharge Over Toe	=			
Total	-	1.443.9	O.T.M.	4,371.7	Stem Weight(s)	=	600.0	3.75	2,250.0
lotai		1,443.9	O. 1.IVI.	4,371.7	Earth @ Stem Transitions:	=			
	=		=		Footing Weight	=	731.3	2.25	1,645.3
Resisting/Overturning	g Rat	io	=	1.60	Key Weight	=		2.50	
Vertical Loads used for	or So	il Pressure	= 2,329.	3 lbs	Vert. Component :	=			
					Total	=	2,099.3	bs R.M.=	7,015.3

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

Use menu item Settings > Printing & Title Block to set these five lines of information for your program.

Title LS Residence_insulated wall Job#: Dsgnr: DOC

Description....

Page: 3 Date: 25 JAN 2018

This Wall in File: P:\Active Jobs\LS Residence\Engineering\ls retaining walls.RPX

RetainPro (c) 1987-2016, Build 11.16.07.15 License: KW-06055874 License To: HARRIOTT SMITH VALENTINE

Cantilevered Retaining Wall

Code: IBC 2015,ACI 318-14,ACI 530-13

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus

250.0 pci

Horizontal Defl @ Top of Wall (approximate only)

0.051 in

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,

because the wall would then tend to rotate into the retained soil.

Use menu item Settings > Printing & Title Block to set these five lines of information for your program.

Title LS Residence_insulated wall Job # : Dsgnr: DOC

Description....

Page: 4 Date: 25 JAN 2018

This Wall in File: P:\Active Jobs\LS Residence\Engineering\ls retaining walls.RPX

RetainPro (c) 1987-2016, Build 11.16.07.15

License: KW-06055874
License To: HARRIOTT SMITH VALENTINE

Cantilevered Retaining Wall

Code: IBC 2015,ACI 318-14,ACI 530-13

Rebar Lap & Embedment Lengths Information

Stem Design Segment: Bottom

Stem Design Height: 0.00 ft abo

0.00 ft above top of footing

Lap Splice length for #4 bar specified in this stem design segment =

18.72 in

Development length for #4 bar specified in this stem design segment =

14.40 in

Hooked embedment length into footing for #4 bar specified in this stem design segment =

8.40 in

As Provided =

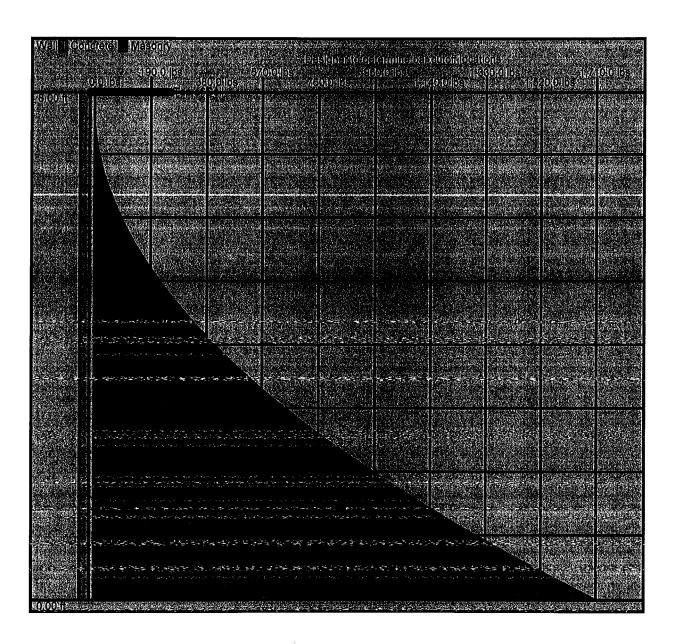
0.3000 in2/ft

As Required =

0.2701 in2/ft

Use menu item Settings > Printing & Title Block to set these five lines of information for your program.

Title LS Residence_insulated wall Job # : Dsgnr: DOC Description....


Page: 5 Date: 25 JAN 2018

This Wall in File: P:\Active Jobs\LS Residence\Engineering\ls retaining walls.RPX

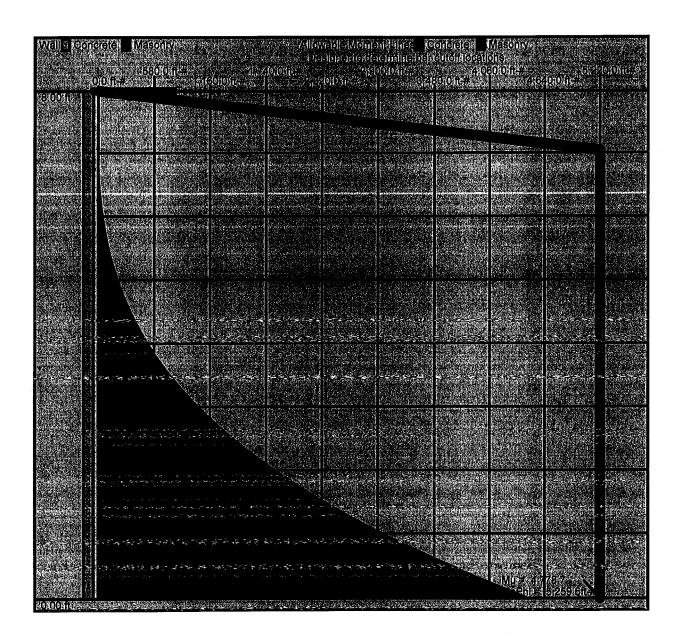
RetainPro (c) 1987-2016, Build 11.16.07.15 License : KW-06055874 License To : HARRIOTT SMITH VALENTINE

Cantilevered Retaining Wall

Code: IBC 2015,ACI 318-14,ACI 530-13

Use menu item Settings > Printing & Title Block to set these five lines of information for your program.

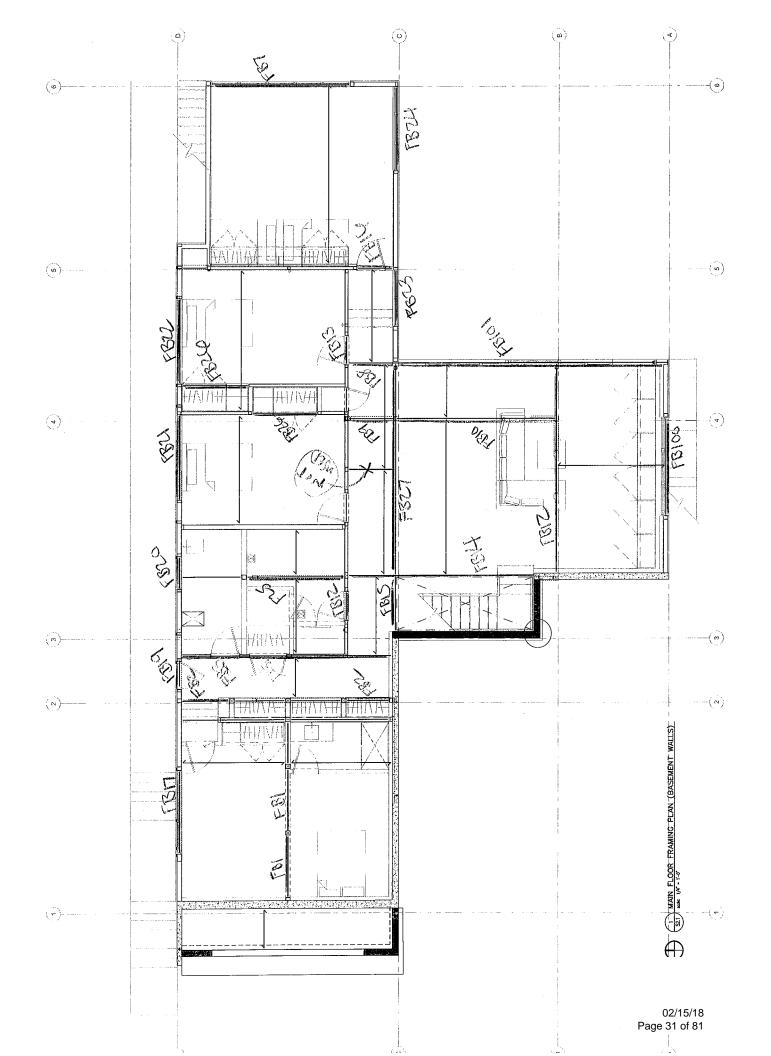
Title LS Residence_insulated wall Job #: Dsgnr: DOC Description....


Page: 6
Date: 25 JAN 2018

This Wall in File: P:\Active Jobs\LS Residence\Engineering\ls retaining walls.RPX

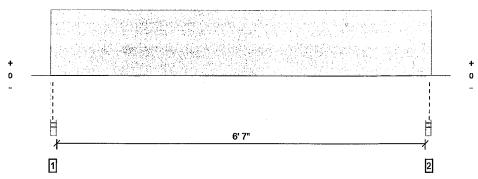
RetainPro (c) 1987-2016, Build 11.16.07.15 License : KW-06055874 License To : HARRIOTT SMITH VALENTINE

Cantilevered Retaining Wall


Code: IBC 2015, ACI 318-14, ACI 530-13

Harriott Valentine Engineers Inc.

Attachment C


Structural Calculations for Correction Notice Item S2.1 – Notes 2,3,4,5,8

MEMBER REPORT Level-1ST, Floor: Drop Beam FB1

1 piece(s) 3 1/2" x 7 1/2" 24F-V8 DF Glulam

Overall Length: 7' 2"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3167 @ 2"	7656 (3.50")	Passed (41%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2357 @ 11"	4638	Passed (51%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	5159 @ 3' 7"	6563	Passed (79%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.100 @ 3' 7"	0.228	Passed (L/823)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.196 @ 3' 7"	0.342	Passed (L/419)		1.0 D + 1.0 L (All Spans)

System: Floor

Member Type: Drop Beam Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

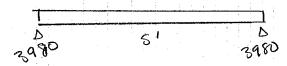
- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 7' 2" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 7' 2" o/c unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 6' 10".
- · The effects of positive or negative camber have not been accounted for when calculating deflection.
- · Applicable calculations are based on NDS.

Supports	Total	e z valitusta	ji coji est	(1) (1)			Accessories
1 - Stud wall - DF	3.50"	3.50"	1.50"	1555	1613	3168	Blocking
2 - Stud wall - DF	3.50"	3.50"	1.50"	1555	1613	3168	Blocking

· Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

	yaisy.	Location (Side)	arribueray Webba); (CE);	1:00:11(c) :(0.00)	Comments
(- Self Weight (PLF)	0 to 7' 2"	N/A	6.4		
1	- Uniform (PSF)	0 to 7' 2" (Top)	11' 3"	38.0	40.0	Residential - Living

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s_CodeReports.aspx.


The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Wes Isbell Harriott Valentine Engineers (20) 662-4476 wisbell@harriottvalentine.com	

BEAM UPDATE

PBZ

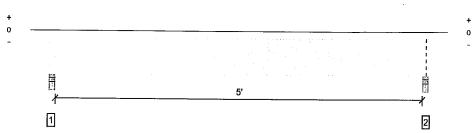
wrood=7'x 80 pet = 350 wroo=12'x85 pst = 1020 wroon=2.5'x85 pot=213

U=3.98°

Un-8,34h

M= 4,95hA

Mn-11.86hA


Drz= 0.00 "= 1/940

45E GL 5/127/2

Level-1ST, Drop Beam FB3

1 piece(s) 3 1/2" x 7 1/2" 24F-V8 DF Glulam

Overall Length: 5' 7"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

		77,77063. cg	Income and the second	Seri.	To describicular(dien))
Member Reaction (lbs)	1985 @ 2"	7656 (3.50")	Passed (26%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1333 @ 11"	4638	Passed (29%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	2449 @ 2' 9 1/2"	6563	Passed (37%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.023 @ 2' 9 1/2"	0.175	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.055 @ 2' 9 1/2"	0.262	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System: Floor

Member Type: Drop Beam Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 5' 7" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 5' 7" o/c unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 5' 3".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- · Applicable calculations are based on NDS.

		er silviği Gyrija				eville, ses Esement	
1 - Stud wall - DF	3.50"	3.50"	1.50"	: 1157	828	1985	None
2 - Stud wall - DF	3.50"	3.50"	1.50"	1157	828	1985	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

		allinia Sections			
0 - Self Weight (PLF)	0 to 5' 7"	N/A	6.4		
1 - Uniform (PSF)	0 to 5' 7" (Top)	7' 5"	55.0	40.0	Residential - Living Areas

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for installation details.

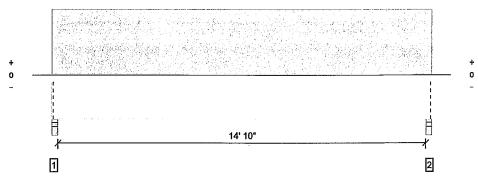
(www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s_CodeReports.aspx.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

SUSTAINABLE FORESTRY INITIATIVE

Forte Software Operator	Job Notes
Doug Clair HVE (206) 624-4760 dclair@harriottvalentine.com	

Harriott Valentine Engineers Inc.


FBLY NOT USED Harriott Valentine Engineers Inc.

FBS NOT USED FBQ NOT USE D

MEMBER REPORT Level-1ST, Drop Beam FB7

1 piece(s) 5 1/2" x 13 1/2" 24F-V8 DF Glulam

Overall Length: 15' 5"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	8031 @ 2"	12031 (3.50")	Passed (67%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	6555 @ 1' 5"	13118	Passed (50%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	29627 @ 7' 8 1/2"	33413	Passed (89%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.224 @ 7' 8 1/2"	0.503	Passed (L/809)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.598 @ 7' 8 1/2"	0.754	Passed (L/303)		1.0 D + 1.0 L (All Spans)

System: Floor

Member Type: Drop Beam Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- \bullet Top Edge Bracing (Lu): Top compression edge must be braced at 15' 5" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 15' 5" o/c unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 15' 1".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- · Applicable calculations are based on NDS.

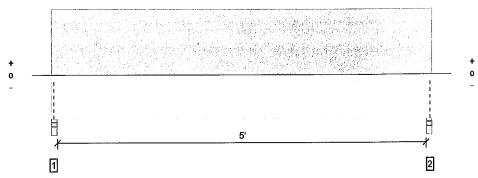
Supports	rojelja	1919 M. A. S.	estation in	10.00	Solojija [Hises Luci	3 (0:))	Accesores
1 - Stud wall - DF	3.50"	3.50"	2.34"	5024	3006	8030	Blocking
2 - Stud wall - DF	3.50"	3.50"	2.34"	5024	3006	8030	Błocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	(Prequentesco)	aldinejaja Valtuila	(52.5) (63.20)	(10.5) (4) (2.02)	(-contract)
0 - Self Weight (PLF)	0 to 15' 5"	N/A	18.0		·
1 - Uniform (PSF)	0 to 15' 5" (Top)	9' 9"	65.0	40.0	Residential - Living Areas

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s_CodeReports.aspx.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator


SUSTAINABLE FORESTRY INITIATIVE

Forte Software Operator	Job Notes	10,74
Wes Isbell Harriott Valentine Engineers (20) 662-4476 wisbell@harriottvalentine.com		

MEMBER REPORT Level-1ST, Drop Beam FB8

1 piece(s) 3 1/2" x 7 1/2" 24F-V8 DF Glulam

Overall Length: 5' 7"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed Result		LDF	Load: Combination (Pattern)		
Member Reaction (lbs)	2829 @ 2"	7656 (3.50")	Passed (37%)		1.0 D + 1.0 L (All Spans)		
Shear (lbs)	1900 @ 11"	4638	Passed (41%)	1.00	1.0 D + 1.0 L (All Spans)		
Pos Moment (Ft-lbs)	3491 @ 2' 9 1/2"	6563	Passed (53%)	1.00	1.0 D + 1.0 L (All Spans)		
Live Load Defl. (in)	0.033 @ 2' 9 1/2"	0.175	Passed (L/999+)		1.0 D + 1.0 L (All Spans)		
Total Load Defl. (in)	0.078 @ 2' 9 1/2"	0.262	Passed (L/806)		1.0 D + 1.0 L (All Spans)		

System: Floor

Member Type: Drop Beam Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

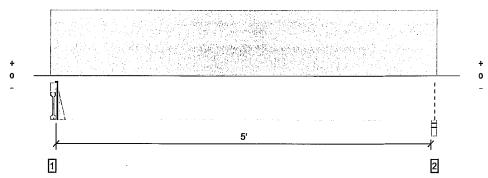
- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 5' 7" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 5' 7" o/c unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 5' 3".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- · Applicable calculations are based on NDS.

emplotes	766		a goldana a	10.16		((E))***** ((E)(E)	Acceptage
1 - Stud wall - DF	3.50"	3.50"	1.50"	1645	1184	2829	Blocking
2 - Stud wall - DF	3.50"	3.50"	1.50"	1645	1184	2829	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

(O305)	(Location (Side)	originalist Salvarion	05-50 -2 (090):	1000AE06 1000A	(Control (1)
0 - Self Weight (PLF)	0 to 5' 7"	N/A	6.4		
1 - Uniform (PSF)	0 to 5' 7" (Top)	10' 7 3/16"	55.0	40.0	Residential - Living Areas

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s_CodeReports.aspx.


The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

🐞 Sustainable Forestry initiative	
-----------------------------------	--

Forte Software Operator	Job Notes	+ 1	
Wes Isbell Harriott Valentine Engineers (20) 662-4476 wisbell@harriottva!entine.com			

1 piece(s) 3 1/2" x 7 1/2" 24F-V8 DF Glulam

Overall Length: 5' 7"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2025 @ 3 1/2"	3413 (1.50")	Passed (59%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1531 @ 11"	4638	Passed (33%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	2594 @ 2' 6 3/4"	6563	Passed (40%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.023 @ 2' 10 1/4"	0.171	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defi. (in)	0.055 @ 2' 10 1/4"	0.256	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System: Floor

Member Type : Drop Beam Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 5' 4" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 5' 4" o/c unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 5' 1 1/2".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- Applicable calculations are based on NDS.

Supports	Total	dealing Avallable	i Kapin se		(6€0) 60 		Assessment
1 - Hanger on Single 2X DF plate	3.50"	Hanger ¹	1.50"	1311	942	2253	See note 1
2 - Stud wall - DF	3.50"	3.50"	1.50"	1256	901	2157	Blocking

- . Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- 1 See Connector grid below for additional information and/or requirements.

Connector Simpson Stron	diffie Connector				a a sa a Maria Sana a sa ma	en en samme de la company
Support Section 1997	HONE!		aroniliya a	Jear Malley 200	Yember Kalla	Agressines .
1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	

Coads	Liscation (Slos)	ardentary. White	(OCO)	(afec(447)4) 24 (403))	Sommence!
0 - Self Weight (PLF)	3 1/2" to 5' 7"	N/A	6.4		
1 - Uniform (PSF)	0 to 5' 7" (Top)	8' 3"	55.0	40.0	Residential - Living

Weverhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s_CodeReports.aspx.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

(3) SUSTAINABLE FORESTRY INITIATIVE

Forte Software Operator	Job Notes	
Wes Isbell Harriott Valentine Engineers (20) 662-4476 wisbell@harriottvalentine.com		

BEAM DESTAN

FBIO

4072 k N=11'x85pot=935 pet D 2.51 2090 2155

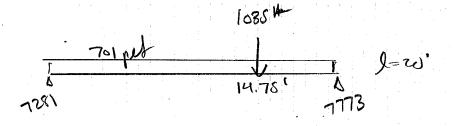
U=12.10h

M=41.184ft

Un- 67.4h

Mn= 113.77 mM

DR=0.27"= L/70 bl=0.13"= L/21000


USE WIER35

FB11 NOT USED

BEAM	DEST CH		- 21	(05210.7E)	
FB12		Po=268260.7 Po=6250# PL=3150#	PD= (9405 # 5693 #	N=25 S05=0.90
	we-c	PS=2774#	PE=2652# (1017E)		
	A	8,25'	14.25 16,5	1 L	=21'10 u
				in the state of th	
	8005	M=58.37	Do=0.55"	9825	
	5944	M= 42.49	bc= 0.40ll	8114	
5	1736	M=14.29		1040	
E	1455	M=11.50		1217	
NE.	3637	M=28.75		3043	
					
D+ L	<u> </u>	7,94h		67.4h	
	M=	100.80h		-113.77 WM	
e de la casa de la cas La casa de la casa de				= 0.95°=2/2	
D+0,75(L45)		100,90ml	Una	67,49 113.774.82	
D(1+0.14505)+ 0.76(0.7E+L+5		28.40	Un Mn=	136.5 C W	CICADE
	The same of the sa	WIU35 L BEAM	314 ¹¹	1510	n 4.3.3

BEAM DESTERN

FBILL

U= 7.77h N= 37.82h-12 N= 100 h N= 89.82 h-H SD+L= 0.44"= 2/545

USE MC12+35


BEAM DESTAN

FBIS WILLSS FINE BY

INSPECTION

1 piece(s) 3 1/2" x 7 1/2" 24F-V8 DF Glulam

Overall Length: 5' 7"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	
Member Reaction (lbs)	4129 @ 2"	7656 (3.50")	Passed (54%)		1.0 D + 1.0 L (All Spans)	
Shear (lbs)	2773 @ 11"	4638	Passed (60%)	1.00	1.0 D + 1.0 L (All Spans)	
Pos Moment (Ft-lbs)	5095 @ 2' 9 1/2"	6563	Passed (78%)	1.00	1.0 D + 1.0 L (All Spans)	
Live Load Defl. (in)	0.045 @ 2' 9 1/2"	0.175	Passed (L/999+)		1.0 D + 1.0 L (All Spans)	
Total Load Defl. (in)	0.114 @ 2' 9 1/2"	0.262	Passed (L/552)		1.0 D + 1.0 L (All Spans)	

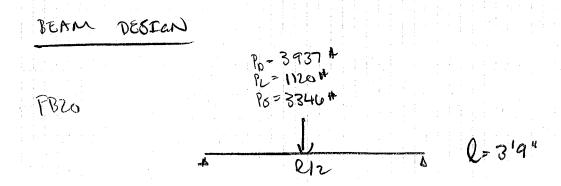
System: Floor

Member Type : Drop Beam Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 5' 7" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 5' 7" o/c unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 5' 3".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- · Applicable calculations are based on NDS.

Supports	Yötai	ex 12 uju Zvaji (885	i.Gajijieds			(MD) (S)(G)(E)	Accessories
1 - Stud wall - DF	3.50"	3.50"	1.89"	2509	1619	4128	None
2 - Stud wall - DF	3.50"	3.50"	1.89"	2509	1619	4128	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.


Loads	Listation (sidé):	kalinie io. Meilie	(08:0)	1100.49V (100.00)	Superior Sales
0 - Self Weight (PLF)	0 to 5' 7"	N/A	6.4		
1 - Uniform (PSF)	0 to 5' 7" (Top)	5'	55.0	40.0	Residential - Living Areas
2 - Uniform (PSF)	0 to 5' 7" (Top)	9' 6"	65.0	40.0	

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for installation details. veyernaeuser expressly discalms any other warranties related to the software, kerer to current weyernaeuser literature for installation details. (www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC Es under technical reports ESR-1153 and ESR-1387 and/or tested in secondary with applicable ASFM technique. accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s_CodeReports.aspx.

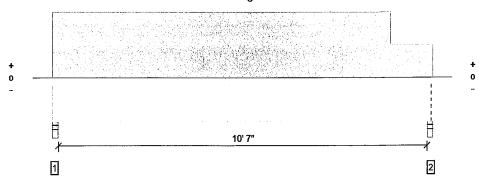
The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

፠			
(83)	SUSTAINABLE	FORESTRY	INITIATIVE

Forte Software Operator	Job Notes
Wes Isbell Harriott Valentine Engineers (20) 662-4476 wisbell@harriottvalentine.com	

\mathcal{D}	1969	M=3.09h-ft	190.9
	660	M=1.054-A	600
\$	1673	M= 3.14h-f	1073

OR GL 312+71/2 OR GL 312+71/2 Un=5.32h Mn=7.55h A


BEAM	DESTar				
	A SAN COLOR OF THE				
		1448 K Co.	16)		
1-851		1			
	160	ies .		0	-9.25
	4	3.01		V /	7.00

Dto.7E. U= 2048# Un= 3.504. M M= 2.524-AL Mn= 3.574-AR Co=1.6

<u>USE</u> (2)2×8

1 piece(s) 5 1/2" x 12" 24F-V8 DF Glulam

Overall Length: 11' 2"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6899 @ 2"	12031 (3.50")	Passed (57%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	5362 @ 9' 10 1/2"	11660	Passed (46%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	18035 @ 5' 6 11/16"	26400	Passed (68%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.115 @ 5' 6 15/16"	0.361	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.267 @ 5' 6 15/16"	0.542	Passed (L/487)		1.0 D + 1.0 L (All Spans)

System : Floor

Member Type : Drop Beam Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 11' 2" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 11' 2" o/c unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 10' 10".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- · Applicable calculations are based on NDS.

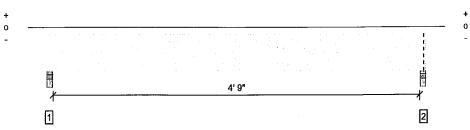
Supports	Total	v ta chilip	: Poguires	eregany Lapinya		e X ((p: X)	Accessories
1 - Stud wall - DF	3.50"	3.50"	2.01"	3918	2981	6899	None
2 - Stud wall - DF	3.50"	3.50"	1.80"	3534	2662	6196	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	(Escation (Side))	inibitate Linkings	(0050)	(40374)() (619)	(៩១៣ភូព)ជុំដី ស្រុ
0 - Self Weight (PLF)	0 to 11' 2"	N/A	16.0		
1 - Uniform (PSF)	0 to 11' 2" (Top)	6' 5"	55.0	40.0	Residential - Living Areas
2 - Uniform (PSF)	0 to 9' 11" (Top)	7'	48.0	40.0	

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s_CodeReports.aspx.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator


%		
SUSTAINABLE	FORESTRY	INITIATIVE

Forte Software Operator	Job Notes	
Wes Isbell Harriott Valentine Engineers (20) 662-4476 wisbell@harriottvalentine.com		

Level-1ST, Drop Beam FB26

1 piece(s) 3 1/2" x 7 1/2" 24F-V4 DF Glulam

Overall Length: 5' 4"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Member Reaction (lbs)	3417 @ 2"	7656 (3.50")	Passed (45%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2242 @ 11"	4638	Passed (48%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	4004 @ 2' 8"	6563	Passed (61%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.038 @ 2' 8"	0.167	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.081 @ 2' 8"	0.250	Passed (L/737)		1.0 D + 1.0 L (All Spans)

System: Floor

Member Type: Drop Beam Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 5' 4" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 5' 4" o/c unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 5'.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- · Applicable calculations are based on NDS.

ಸ್ವಾಪ್ಕಾಪ್ ಕ್ಷಾಪ್ ಸ್ವಿಪ್ಕಾಸ್ಕೆ					45 es 15			
			Morrie		18 1 13 13 1 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
1 - Stud wall - DF	3.50"	3.50"	1.56"	1817	1600	3417	None	
2 - Stud wall - DF	3.50"	3.50"	1.56"	1817	1600	3417	Blocking	

· Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

0 - Self Weight (PLF)	0 to 5' 4"	N/A	6.4		
1 - Uniform (PSF)	0 to 5' 4" (Top)	15'	45.0	40.0	Residential - Living Areas

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for installation details.

(www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s_CodeReports.aspx.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

SUSTAINABLE	FORESTRY	INITIATIVE
CO SOSIANIADES	Chesiki	

Forte Software Operator	Job Notes
Doug Clair HVE (206) 624-4760 dclair@harriottvalentine com	

BEAM DEST	Pe	=10000 * (07 E)	a:s
F827	R	0=7678 # -6916"# = 1850#	\$05°0.94
	D	10.5'	Q=22'
D 1919	M=31.67	5764	Do= 0.284 h
L 1716	M= 7.40	5199 139Q	DC=0.224
E zuso	M= 43.72h M= 109.8	(7150 1987S	
D+ LIC	U= 10.87h W= 59.98hl	0n- Mn: DTZ=0,46"	=U
(1+ 505 B.141)D	use wilks		
71 MOTE)	Ue 25.03h M= 140.97 145.23	Un= 86.22 h Mn= 153.29	WITH WELL
(1+0.105505)D to.75(US+07E)	U= 26.09h W= 143.76 h-03	Un- 84.22 h Mr=153.29 h	7-10 12,4.3.3
	use Wizi	35 /	

DESTAN BEKM

FB29 NOT BEAM DESIGN

W= 6'-90 pst = 540 pet

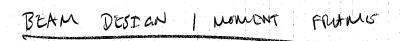
2935

2935

U= 2.84h

M= 7.44h

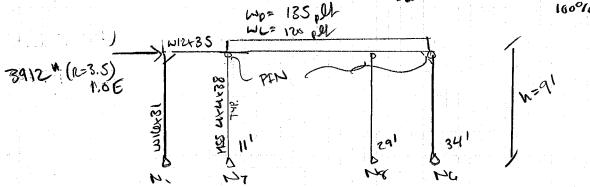
An= 0.39"=2/3260


AL= 0.17"=2/7240

USE 666 3'/249

BEAMS (SIMPLE SPAN UNIFORM LOAD)

	\		,		CONCRETE 150	PLF
	w	(floor)	05 1	(roof)	50 maf	
Δ	L	total floor = live load =	85 psf 40 psf	total roof = snow load =	50 psf 25 psf	
location	<u>criteria</u>	<u>demand</u>		capacity		
BR4	w (total) = 85 p		0.09 k	Vr =	2.18 k	
BR5		Frank =	0.04 k-ft	Mr =	2.23 k-ft	
SB18	L = 2.00-f	` '	3.06E+05 lb-in2	El =	1.24E+08 lb-in2	
SB19	floor = 1.00 fl		2.16E+05 lb-in2	d (total) =	0.00 in = L/	####
FB20	roof = 0.00 fi		The second second	_d (live) =	0.00 in = L/	####
CANTON CO. MICHAEL STATE OF THE	wall = 0.00 f	t		CONTRACTOR STATES		
and market and a				<u>use</u>	(2) 2x8	
•					THE WAS IN THE PARTY OF THE PARTY.	
location	<u>criteria</u>	demand		capacity	The state of the s	Denne Land
SB21	w (total) = 85 p	lf V=	0.62 ₭	Vr =	2.18 k	
SB22	$w ext{ (live)} = 40 p$	If M=	2.26 k-ft	Mr =	2.23 k-ft	
	L = 14.60 fr		1.19E±08 lb-in2	El =	1.24E+08 lb-in2	
	floor = 1.00 ft	` '	8.40E+07 lb-in2	d (total) =	0.70 in = L/	250
	roof = 0.00 ft			d (live)	0.33 in = L/	531
	wall = 0.00 f	t			- market water that the last of the last o	
				<u>use</u>	(2) 2x8	
location	<u>criteria</u>	demand		capacity		
→ FB23	w (total) = 85 p	If V=	0.38 k	Vr =	2.18 k	
→>FB24	w (live) = 40 p	If M =	0.86 k-ft	Mr =	2.23 k-ft	
	L = 9.00 ft	El (total) =	2.79E+07 lb-in2	EI =	1.24E+08 lb-in2	
	floor = 1.00 ft	El (live) =	1.97E+07 lb-in2	d (total) =	0.10 in = L/	1066
	roof = 0.00 ft			d (live) =	0.05 in = L/	2266
	wall = 0.00 fr	t				
				<u>use</u>	(2) 2x8	


			(floor) total floor = live load =	85 psf 40 psf			
location	on <u>criteria</u>		demand		capacity		
→ FB2	w (total) = w (live) = L = floor = roof = wall =	287 plf 135 plf 3.80 ft 3.38 ft 0.00 ft 0.00 ft	V = M = El (total) = El (live) =	0.55 k 0.52 k-ft 7.08E+06 lb-in2 5.00E+06 lb-in2	Vr = Mr = EI = d (total) = d (live) =	2.18 k 2.23 k-ft 1.24E+08 lb-in2 0.01 in = L/ 0.01 in = L/	
∖ FB13	w (total) = w (live) = L = floor = roof = wall =	374 plf 176 plf 3.00 ft 4.40 ft 0.00 ft	V = M = EI (total) = EI (live) =	0.56 k 0.42 k-ft 4.54E+06 lb-in2 3.21E+06 lb-in2	Vr = Mr = EI = d (total) = d (live) =	2.18 k 2.23 k-ft 1.24E+08 lb-in2 0.01 in = L/ 0.00 in = L/	
FB21	w (total) = w (live) = L = floor = roof = wall =	401 plf 176 plf 9.25 ft 4.40 ft 0.00 ft	V = M = El (total) = El (live) =	1.85 k 4.29 k ft 1.43E+08 lb-in2 9.40E+07 lb-in2	Vr = Mr = EI = d (total) = d (live) =	2.78 k 3.33 k-ft 2.57E+08 lb-in2 0.26 in = L/ 0.11 in = L/	432 985
→ FB22	w (total) = w (live) = L = floor = roof = wall =	157 plf 40 plf 9.70 ft 1.00 ft 0.00 ft 8.00 ft	V = M = EI (total) = EI (live) =	0.76 k 1.85 k-ft 6.45E+07 lb-in2 2.46E+07 lb-in2	Vr = Mr = EI = d (total) = d (live) = use	2.78-k-7.15 2.53"k-ft 7.7 2.57E+08 lb-in2 -0.42 in = L/ -0.03 in = L/	23 -957 HSC-
			(floor) total floor = live load =	85 psf 40 psf	_	Circle	
locatio	<u>n criteria</u>		<u>demand</u>		<u>capacity</u>		
う FB19	w (total) = w (live) = L = floor = roof = wall =	529 plf 232 plf 3.25 ft 5.80 ft 0.00 ft 4.00 ft	V = M = El (total) = El (live) =	0.86 k 0.70 k-ft 8.17E+06 lb-in2 5.38E+06 lb-in2	Vr = Mr = EI = d (total) = d (live) =	2.18 k 2.23 k-ft 1.24E+08 lb-in2 0.01 in = L/ 0.00 in = L/	3639 8297

IBIOI.

F TANCS MATH FLOOR DELK ONU! N SW TAKES PER

DESTANTE TO TAKE LOND

MEMBER COMOCNG

WICH31 POST . U = 257h

DCR: 0.04

M= 28.27 n-A

DUL: 0.35

WIZY3S BEAM

U= 2,57"

DCR: 0.35

DR=0.104

uce POST

U=1.22 h M= 5.40 h-11

DUN=0.02

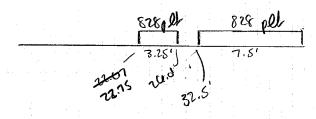
DUK= 0.10

REKUTONI

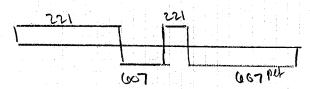
N1: -2.57"

Nr: +2.9"

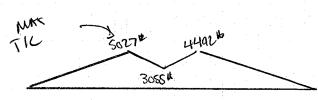
N7: +3.95"


Na: 0.85h

MF DRAG STRUT ISTRUP


UTHE (A) UPIML = 8800#

8860 # /40'=221 #16+


VOER

~ wall = 8640th/ 10.761 = 828 pgl

Comb

COMP => SLT 5

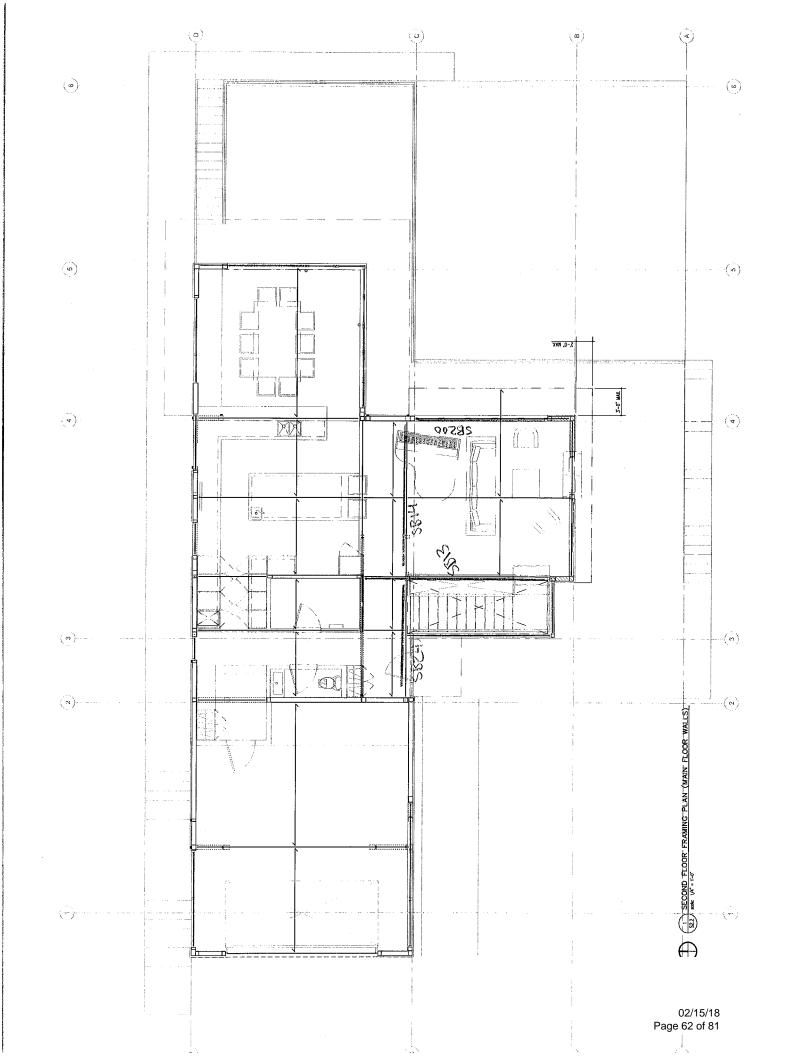
D= 6.46"

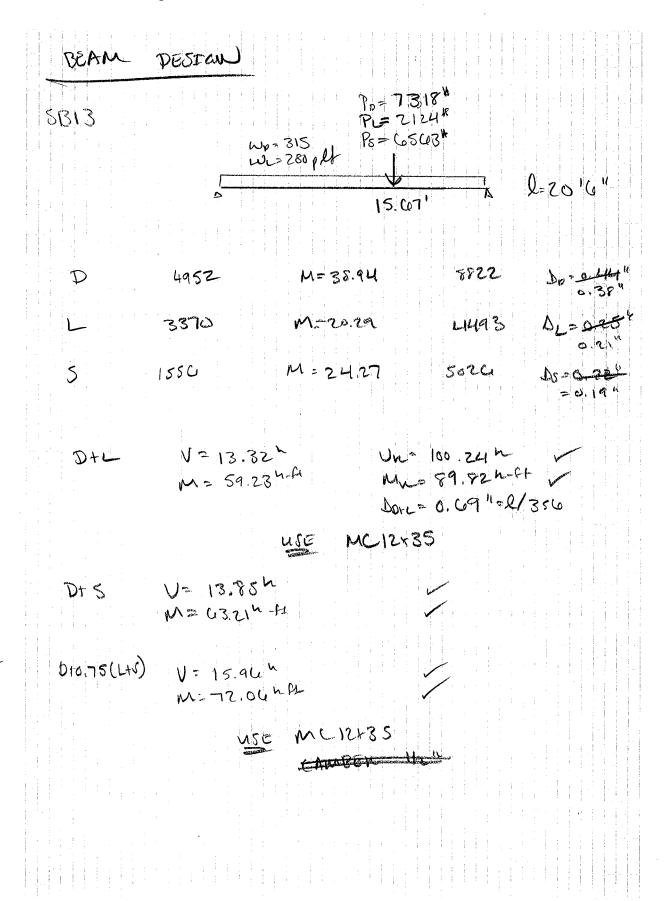
b= 12" TNFB

Fu= 135 psi

Un= 2/8 fo A= 2/3(BS) (6 W) (12") = 7/92" > 8027 "

TONS & USO CMITCH STRAP CONT.


SDS SCREWS (DET 81543).


114" OFF" LONG @ 4" 0 > Z= 250" (1.0) × 12" = 940 pot > 528 pot /

1125
C 25% DEGLERSE FOR UERT OFFSET

Attachment D

Structural Calculations for Correction Notice Item S2.2 - Notes 3,9

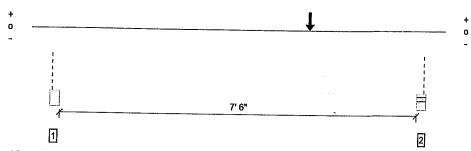
1932 First Avenue, Suite 720 Seattle, Washington 98101-2447 tel. 206 624 4760 | fax 447 6971 LS

BEAM DEST	<u>aw</u>		
5B1-6	Pp=4136 Pp=3630 Pc=3675 Ps=4537		
	P 7 7 8.38,	Δ.	Q=1c'8"
D 4925	M= 24.484-AL	2935	\$70.1C"
L 1839	M= 15.324-A	1830	DE0.094
5 3448	M= 13.80 hA	1690	b5=0.07"
D+L	$V = 6.07^{n}$ $M = 39.8^{n}$	Un=57.48	14 14
		Dore 0,25	-u=l/200
in the second se	USE 118 WIZT	30	
D+S	U= 9.274	In= 87,45	
	m-38.28 hr	$M_{N} = 94.30^{\circ}$ $>_{S} = 0.07^{4}$	e <i>1</i>
	use wier31		
		and the state of t	
Dr 0.75 (L15)	U=8.79h	Un= 5-	
Dt 0.75 (Lts)	V=8,79h M=44,32h-f+ USE WPLT	mn-96	

DFC U= 6.61h Un= 57.45h
M= 3.43h-A- Mn= 94.30h-AAorc= 0.02"=l/51000

USB W12430

SB500	Wy	= 330 pel = 293 pel 5 = 183 pl	DU = 41 8L 21	5 psf 0 psf 5 ps 144
\mathcal{D}	2433	Mo=8,97h-H	2433	Dp=0.25"
	2160	Mc=7.974-B	2166	DL= 0.22" = 2/804
5	1349	Ms = 4.98h-AL	1349	De > 0.14"
D+L	N= 4.59h M= 16.94L	t un= 3	11 Cile h 20,21 h f1	
		DOTL =	0.474=21	374
	us	E GL 6/12×17		
D+0.75(L)	N= 18.081	NAPA MA	13.37 h 30.14 h-A	
FOR		of 3/8" 01		
	>> NCE	W12x30 Don	= 0.10 ¹ =1	2/71000


Attachment E

Structural Calculations for Correction Notice Item S2.2 – Note 5

Level-2ND FLOOR, Drop Beam-SB20

1 piece(s) 5 1/2" x 12" 24F-V8 DF Glulam

Overall Length: 8' 5"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5815 @ 8' 1"	18906 (5.50")	Passed (31%)		1.0 D (All Spans)
Shear (lbs)	5791 @ 6' 11 1/2"	10494	Passed (55%)	0.90	1.0 D (All Spans)
Pos Moment (Ft-lbs)	13512 @ 5' 9"	23760	Passed (57%)		1.0 D (All Spans)
Live Load Defl. (in)	0.000 @ 0	0.258	Passed (2L/999+)		1.0 D (All Spans)
Total Load Defl. (in)	0.079 @ 4' 6 7/8"	0.387	Passed (L/999+)		1.0 D (All Spans)

System: Floor

Member Type: Drop Beam Building Use: Residential Building Code: IBC 2015 Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 8' 5" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 8' 5" o/c unless detailed otherwise.
- \bullet Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 7' 9".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- Applicable calculations are based on NDS.

		Bearing		Londs to	S prote BS)	
Supports	Total	Available	Required	Dead	Total	Accessories
1 - Column - DF	5.50"	5.50 ⁿ	1:50"	2543	2543	Blocking
2 - Stud wall - DF	5.50"	5.50"	1.69"	5815	5815	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

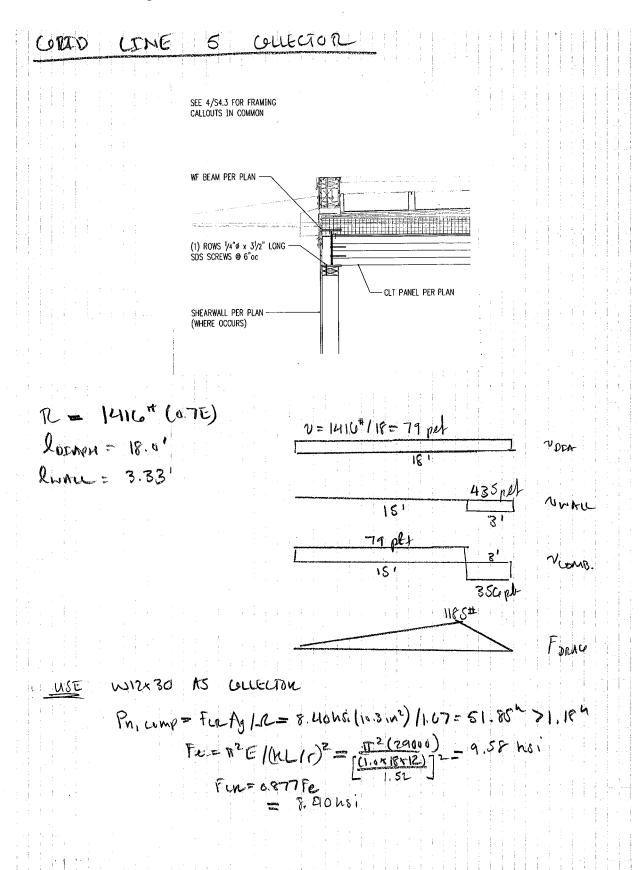
Loads	Location (Side)	Tributary Width	Dead (0.90)	Communits
0 - Self Weight (PLF)	0 to 8' 5"	N/A	16.0	CONTRACTOR OF THE PROPERTY AND ADDRESS OF THE PROPERTY OF THE
1 - Point (lb)	5' 9" (Top)	N/A	8223	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s_CodeReports.aspx.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

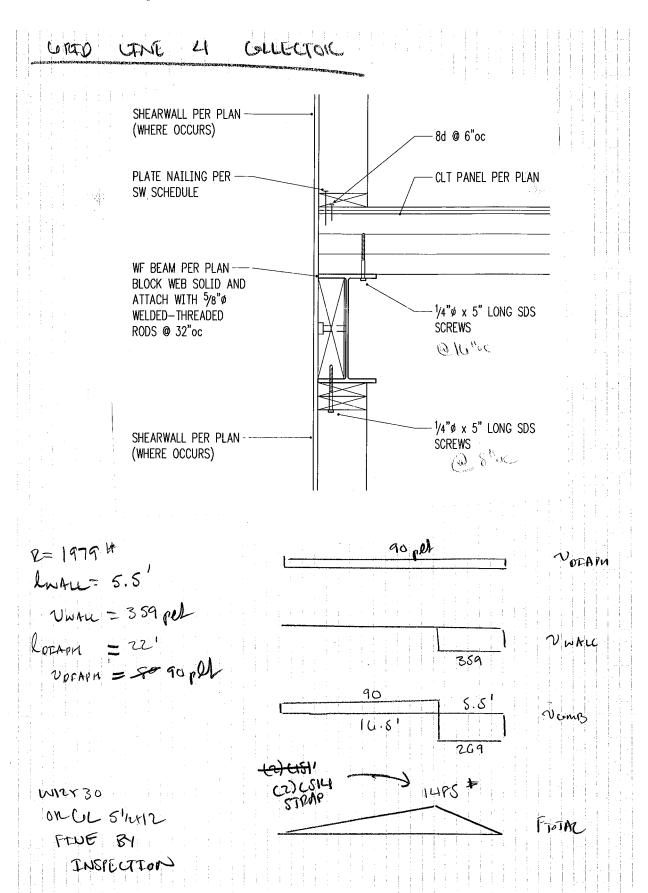
SUSTAINABLE FORESTRY INITIATIVE


Forte Software Operator	Jab Notes	-
Wes Isbell Harriott Valentine Engineers (20) 662-4476 wisbell@harriottvalentine.com		

Past.	T8 R	E SBZD	- ENST	Retation	
			J P= 58	(5	
		210			
	· · · · · · · · · · · · · · · · · · ·	710,			
				Dage	
		USE (2))240	Past	

Species: Size:	HF stud 2x6							
Fc* = E = c' = d = KcE =	800 ; 1.20E+06 ; 0.8 5.5 i 0.3	osi	=c ₊ =	405 _i	psi			<< sill plate is Hem-Fir
le (ft)	le (in)	FcE (psi)	F'c (psi)	(2)2x6 Pa (lb)	(3)2x6 Pa (lb)	(4)2x6 Pa (lb)	(5)2x6 Pa (lb)	
Pa (perp)				6683	10024	13365	16706	
8.00 8.50 9.00 9.50 10.00 10.50 11.00 11.50	96.00 102.00 108.00 114.00 120.00 126.00 132.00 138.00 144.00	1182 1047 934 838 756 686 625 572 525	645 620 593 565 537 509 480 453 427	10642 10229 9788 9329 8860 8390 7928 7479 7049	15963 15343 14683 13994 13290 12586 11892 11219 10574	21284 20457 19577 18658 17720 16781 15856 14959 14099	26605 25572 24471 23323 22151 20976 19820 18699 17624	<< crushing governs up to a height of 12'-5" w/ Hem-Fir (8'-5" if Doug-Fir)

Attachment F

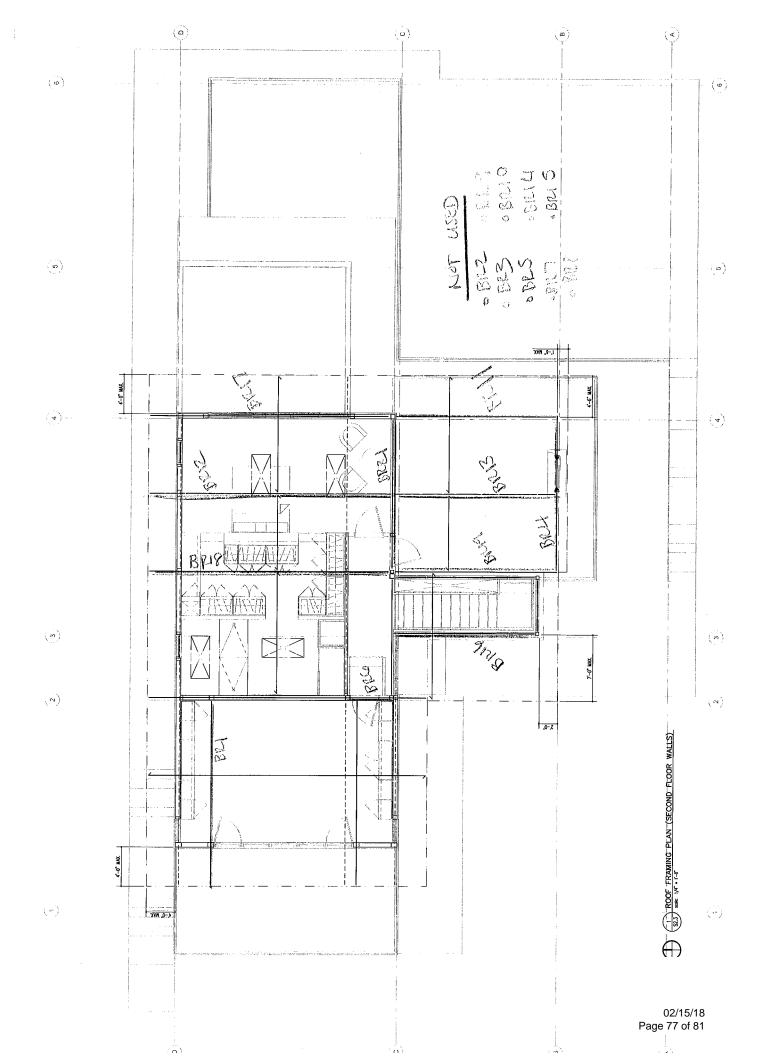

Structural Calculations for Correction Notice Item S2.2 - Note 6

COLLECTOR LONI'O

Attachment G

Structural Calculations for Correction Notice Item S2.2 - Note 7

 OU	Ecton	suren				
R=	1479 W					
	LOTAPA	etiones,	22			
	Lunu					


$$\frac{WF}{SCREWS} = \frac{1979 \#}{450 \%} = 5 SCREWS$$

$$\frac{1}{4} \frac{1979 \#}{150 \%} = \frac{13.2 \#}{12.40c}$$

$$\frac{1}{12.40c} \frac{1}{12.40c}$$

Attachment H

Structural Calculations for Correction Notice Item S2.3 – Note 2

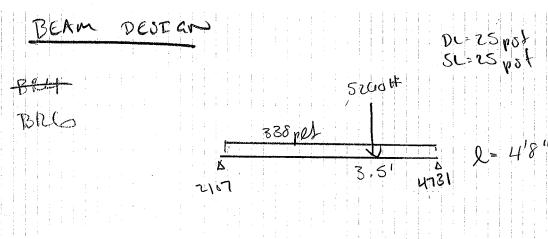
BEAMS (SIMPLE SPAN UNIFORM LOAD)ROOF

	L		(snow) total load = live load =	45 psf 25 psf			
location BR1	criteria w (total) = w (live) = L = trib. =	675 plf 375 plf 15.58 ft 15.00 ft	demand V = M = El (total) = El (live) =	5.06 k 5.26 k 20.49 k-ft 1.15E+09 lb-in2 9.58E+08 lb-in2	capacity Vr = Mr = El = d (total) = d (live) =	15.05 k 37.70 k-ft 2.03E+09 lb-in2 0.44 in = L/ 0.25 in = L/	424 763
					<u>use</u>	GL 3.5x13.5	
location	<u>criteria</u>		demand		<u>capacity</u>		
BR11	w (total) = w (live) = L = trib. =	379 plf 210 plf 17.67 ft 8.42 ft	V = M = El (total) = El (live) =	3.24 k 3.35 k 14.78 k-ft 9.40E+08 lb-in2 7.84E+08 lb-in2	Vr = Mr = El = d (total) = d (live) =	16.70 k 46.06 k-ft 2.78E+09 lb-in2 0.30 in = L/ 0.17 in = L/	711 1279
					<u>use</u>	GL 5.5x15	
location BR12	criteria w (total) = w (live) = L = trib. =	368 plf 204 plf 22.60 ft 8.17 ft	demand V = M = El (total) = El (live) =	4.05 k 4.15 k 23.46 k-ft 1.91E+09 lb-in2 1.59E+09 lb-in2	capacity Vr = Mr = El = d (total) = d (live) =	24.60 k 78.31 k-ft 4.81E+09 lb-in2 0.45 in = L/ 0.25 in = L/	605 1089
					use	GL 6.75x18	
location	<u>criteria</u>		demand		capacity		
BR13	w (total) = w (live) = L = trib. =	368 plf 204 plf 17.58 ft 8.17 ft	V = M = El (total) = El (live) =	3.12 k 3.23 k 14.20 k-ft 8.99E+08 lb-in2 7.49E+08 lb-in2	Vr = Mr = El = d (total) = d (live) =	16.70 k 46.06 k-ft 2.78E+09 lb-in2 0.28 in = L/ 0.16 in = L/	743 1338
					use	GL 5.5x15	

location	<u>criteria</u>		demand	2.20	capacity		
BR16	w (total) = w (live) = L = trib. =	450 plf 250 plf 15.67 ft 10.00 ft	V = M = El (total) = El (live) =	3.39 k 3.53 k 13.81 k-ft 7.79E+08 lb-in2 6.49E+08 lb-in2	Vr = Mr = El = d (total) = d (live) =	16.70 k 46.06 k-ft 2.78E+09 lb-in2 0.22 in = L/ 0.12 in = L/	858 1544
					<u>use</u>	GL 5.5x15	
location	<u>criteria</u>		demand	2.87 k	capacity		
BR17	w (total) = w (live) = L = trib. =	379 plf 210 plf 15.75 ft 8.42 ft	V = M = EI (total) = EI (live) =	2.98 k 11.74 k-ft 6.66E+08 lb-in2 5.55E+08 lb-in2	Vr = Mr = El = d (total) = d (live) =	16.70 k 46.06 k-ft 2.78E+09 lb-in2 0.19 in = L/ 0.10 in = L/	1004 1806
					use	GL 5.5x15	
location	<u>criteria</u>		<u>demand</u>	4.13 k	capacity		
BR18	w (total) = w (live) = L = trib. =	474 plf 264 plf 18.00 ft 10.54 ft	V = M = El (total) = El (live) =	4.27 k 19.21 k-ft 1.24E+09 lb-in2 1.04E+09 lb-in2	Vr = Mr = Ei = d (total) = d (live) =	24.60 k 78.31 k-ft 4.81E+09 lb-in2 0.23 in = L/ 0.13 in = L/	928 1670
					use	GL 6.75x18	
location	<u>criteria</u>		demand	2.79 k	<u>capacity</u>		
BR19	w (total) = w (live) = L = trib. =	326 plf 181 plf 17.67 ft 7.25 ft	V = M = El (total) = El (live) =	2.88 k 12.73 k-ft 8.10E+08 lb-in2 6.75E+08 lb-in2	Vr = Mr = EI = d (total) = d (live) =	238.02 k 96.81 k-ft 6.26E+09 lb-in2 0.11 in = L/ 0.06 in = L/	1856 3341
					<u>use</u>	MC13x35	

MEMBER POTUCS

BELOW 241130 - UMAY = 3.53"


MINING 21.85 - 21 5021 - 0.32

ADSINGENERO = 215021 - 1

BENCHIONS 5 BALLATE

No = 1.35h TUB 77.5363 1400 12= 1764 To= +0.284

DIMU = 7122"/250 = 91 SERCUS - @ 24"00

U=473h

Un= 15.05h Mn= 37.7 n-M DTU 0.0111=1/71000

USE COL 5 hx 13 h

1932 First Avenue, Suite 720 Seattle, Washington 98101-2447 tel. 206 624 4760 | fax 447 6971 LS